Scaling behavior in the convection-driven Brazil nut effect.
نویسندگان
چکیده
The Brazil nut effect is the phenomenon in which a large intruder particle immersed in a vertically shaken bed of smaller particles rises to the top, even when it is much denser. The usual practice while describing these experiments has been to use the dimensionless acceleration Γ = aω(2)/g, where a and ω are, respectively, the amplitude and the angular frequency of vibration and g is the acceleration due to gravity. Considering a vibrated quasi-two-dimensional bed of mustard seeds, we show here that the peak-to-peak velocity of shaking v = aω, rather than Γ, is the relevant parameter in the regime where boundary-driven granular convection is the main driving mechanism. We find that the rise time τ of an intruder is described by the scaling law τ ~ (v-v(c))(-α), where v(c) is identified as the critical vibration velocity for the onset of convective motion of the mustard seeds. This scaling form holds over a wide range of (a,ω), diameter, and density of the intruder.
منابع مشابه
Influence of friction on granular segregation.
Vertical shaking of a mixture of small and large beads can lead to segregation where the large beads either accumulate at the top of the sample, the so-called Brazil nut effect (BNE), or at the bottom, the reverse Brazil nut effect (RBNE). Here we demonstrate experimentally a sharp transition from the RBNE to the BNE when the particle coefficient of friction increases due to aging of the partic...
متن کاملReverse Brazil nut problem: competition between percolation and condensation.
In the Brazil nut problem (BNP), hard spheres with larger diameters rise to the top. There are various explanations (percolation, reorganization, convection), but a broad understanding or control of this effect is by no means achieved. A theory is presented for the crossover from BNP to the reverse Brazil nut problem based on a competition between the percolation effect and the condensation of ...
متن کاملCombined mixed convection and radiation simulation of inclined lid driven cavity
This paper presents a numerical investigation of the laminar mixed convection flow of a radiating gas in an inclined lid-driven cavity. The fluid is treated as a gray, absorbing, emitting, and scattering medium. The governing differential equations including continuity, momentum and energy are solved numerically by the computational fluid dynamics techniques (CFD) to obtain the velocity and tem...
متن کاملComment on "Reverse Brazil nut problem: competition between percolation and condensation".
In a recent paper [1] the Brazil nut problem (BNP), where particles with large diameters rise to the top when exposed to vertical shaking and the reverse Brasil nut problem (RBNP) where the large particles segregate to the bottom were investigated. In realistic situations these effects are driven or at least accompanied by global convection. Convection rolls are observed already in mono-dispers...
متن کاملEFFECT OF WAVY WALL ON CONVECTION HEAT TRANSFER OF WATER-AL2O3 NANOFLUID IN A LID-DRIVEN CAVITY USING LATTICE BOLTZMANN METHOD
Abstract In the present study, the effects of wavy wall’s properties on mixed convection heat transfer of Water-Al2O3 Nanofluid in a lid-driven cavity are investigated using the Lattice Boltzmann Method. The Boundary Fitting Method with second order accuracy at both velocity and temperature fields is used to simulate the curved boundaries in the LBM. The problem is investigated for different ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 86 5 Pt 1 شماره
صفحات -
تاریخ انتشار 2012